Lateral System Analysis Study

Prince Frederick Hall

The University of Maryland

College Park, MD

Christopher Cioffi AE Senior Thesis- Structural Advisor: Heather Sustersic

Table of Contents

General Information
Executive Summary
Site Plan and Location of Building
Documents and Programs Used3
Gravity Load Calculations4
Wind Load Calculations
Seismic Load Calculations
Wind and Seismic Overview
ETABS Model
ETABS Model Check
Center of Rigidity/ Center of Mass
Shear Wall Relative Rigidity Table
Wind Load Combinations
Seismic Load Combinations
Torsional Amplification Factors
Horizontal Structural Irregularities42
Controlling Load Case
Member Strength Spot Check
Story Drift Checks
Maximum Overturn/ Resisting Forces/ Foundation Impact
Conclusion
AppendixA
Center of Rigidity CalculationsB
Center of Mass Calculations E
Controlling Case OutputH

Executive Summary

The purpose of this technical report is to establish an understanding of Prince Frederick Hall's structural and existing features. Prince Frederick Hall is nestled at the heart of The University of Maryland's campus and is a multi-use dormitory building consisting of living and office spaces. This document provides an overview of all the structural components designed by Cagley & Associates Inc. including general floor framing, structural slabs, shear wall, and the foundation system. Integration of all structural components is explained and elaborated upon. The pictures and images (unless otherwise noted) are the property of The University of Maryland and WDG Architecture PLLC and are being used solely for educational purposes.

Site Plan and Location of Building

LIST OF DOCUMENTS USED

Documents and Programs Used for Analysis and Design

- ASCE 7-08
- ACI 318-08
- AISC 14th Edition
- ETABS 2013
- Reinforced Concrete Mechanics and Design $6^{\rm th}$ edition, Wright

gravity loads 9/ZF CHRISTOPHER CIOFR IN STRUCTURAL NOTES SI.00 Roof live load -30psf min (ponding or snow load is used when greater than 30 psf) -design with 30psf (137 + 142)(30psf) = 837psffeet = 0.83761 = 0.837/1/F 23

$$h_{0} = P_{8}I_{8} = 21I_{17}P_{7} = 117$$

$$h_{C} = 0.2 \qquad 20 \qquad hr = h_{C} + h_{0}$$

$$h_{0} = 0.75 (0.43 10^{1/3} (P_{9} + 10)^{6/1/3} - 1.5)$$

$$h_{d} = 0.75 (0.43 10^{1/3} (P_{9} + 10)^{6/1/3} - 1.5)$$

$$h_{d} = 2.44t$$

$$W = 4(2.44t) = 9.0 \text{ freet}$$

$$P_{d} = h_{d}Y = 2.4(17.9) = 43\text{ psf}$$

$$P_{d} + P_{r} = 43 + 21 = 0.4 \text{ psf}$$

$$growtont = \frac{P_{d}}{W} = \frac{43}{9.0} = 4.5$$

$$yrowtont = \frac{P_{d}}{W} = \frac{43}{9.0} = 4.5$$

-

$$h_{z} = 2.01 (15/Z_{g})^{2/4} \text{ if } Z < 15'$$

$$h_{z} = 2.01 (Z/Z_{g})^{1} \text{ if } Z < 15'$$

$$h_{z} = 2.01 (Z/Z_{g})^{1} \text{ if } Z > 15'$$

$$Z_{g} = 1200 \text{ toble } 0.2$$

$$d = 7.0$$

$$h_{z} \text{ for } Z = 0 = 2.01 (15/1200)^{-1} = 0.574$$

$$h_{z} \text{ for } Z = 32 = 2.01 (32/1200)^{-1} = 0.714$$

$$Colculations \text{ for rest of heights Shaw}$$

$$On \text{ excel Sheet Offloced at end of}$$

$$Section.$$

$$Q_{z} = 0.00256 \text{ M}_{z} \text{ M}_{z} \text{ Kat } \text{ Kat } \text{ V}^{2} \text{ I } \text{ Eg } 6-15$$

$$h_{z} = Calculated 000 \text{ ve}$$

$$h_{zt} = 1.0 \text{ topo factor}$$

$$h_{d} = \text{wind directionality} = 0.85$$

$$V = 90$$

$$I = 1.15$$

$$Gust factor (E-w)$$

$$I_{z} = C (33/Z)^{(1/w)} =$$

$$\overline{Z} = 0.001 = 0.(0(107) = 642$$

$$L_{z} = l(\overline{33})^{2} = 320(\frac{642}{33})^{3} = 399.5$$

$$Q = \sqrt{\frac{1}{1+0.03(\frac{8+n}{L_{z}})^{0.03}}$$

Wind Load Calculations

$$Q = \sqrt{\frac{1}{1}(1 + \overline{0.03}(100,7+107,0)^{103}} = \frac{1}{399.5})^{103}}$$

$$Q = 0.750$$

$$G = 0.925 \left[\frac{1+1.79_{0}T_{z}}{1+1.79_{v}T_{z}}\right]$$

$$= 0.925 \left(\frac{1+1.7(3,4)(0.27)(.75)}{1+1.7(3,4)(0.27)}\right)$$

$$= 0.784$$

$$P (windward) = Q_{z}GC_{p} - g_{1}GC_{pi} - e_{g}(0,5_{2}))$$

$$P at z = 0 = (11.6)(0.784)(.3)^{15} in equiliborium = 7.306$$

$$= (20.42)(0.784)(0.8)$$

$$= 12.81$$

$$P(eeward) = Q_{z_{100p}}GC_{p}$$

$$= (20.42)(0.784)(0.8)$$

$$= 10.784$$

$\frac{2000000}{20000000000000000000000000000$	$\frac{20nc_{1}}{20nc_{2}} \frac{0.60}{12} \frac{10}{20} \frac{10}{2} \frac{10}{10} \frac$				Wind LOOD Calculations
$\frac{20nc2}{20nc3} + \frac{1}{100} + \frac{1}{20nc3} + \frac{1}{100} + \frac{1}{20nc3} + \frac{1}{100} + \frac{1}{20nc3} + \frac{1}{20nc4} + $	$\frac{20nc_{2}}{20nc_{3}} \frac{1}{n + 0.2n} - 0.5}{n + 0.2n} = \frac{1}{0.5} \frac{1}{107 - 2.14} ft}{20nc_{4}} \frac{1}{22n} - 0.3} \frac{1}{214 - cnd}$ $\frac{1}{p} \frac{1}{20nc_{4}} \frac{1}{22n} - 0.3}{214 - cnd}$ $\frac{1}{p} \frac{1}{20nc_{4}} \frac{1}{2} \frac{1}{20nc_{4}} \frac{1}{2} \frac{1}{20nc_{4}} \frac{1}{2} \frac{1}{20nc_{4}} \frac{1}{2} \frac{1}{20nc_{4}} \frac{1}{2} \frac{1}{20nc_{4}} \frac{1}{20nc_{$	Zone	1 0 to n/2 2 n/2 to h	$C_0 = -0.9$	0-53 ft 53-107 ft
$\frac{20ne 4}{72n} -0.3 = 214 - end$ $P = 20ne 1 = 8 C_{P} G$ $= 20.42(-0.9)(0.784)$ $= -14.41$ $P = 20.42(-0.9)(0.784)$ $= -14.41$ $P = 20.42(-0.3)(0.784)$ $= 8.0$ $P = 0.42(-0.3)(0.784)$ $= 4.80$ $S10e = 150$ $P = 0nG C_{P} = 500$	$\frac{20ne 4}{p} \frac{22n}{-0.3} \frac{-0.3}{244-end}$ $P = 20ne 1 = 8CPG$ $= 20.42(-0.9)(0.784)$ $= -14.41$ $P = 20ne 2 = 20.42(-0.9)(0.784)$ $= -14.41$ $P = 20ne 3 = 20.42(0.5)(0.784)$ $= 8.0$ $P = 0.42(-0.3)(0.784)$ $= 4.80$ $S10e walls:$ $P = 0.6CP = soewall$ $= 20.42(0.784)(0.7).$ $P = 11.21$	ZONC	3 nioan	-0.5	107 - 214 ft
$P = Q_{0} = Q_{0} = Q_{0} = Q_{0} = Q_{0} + Q_{0} + Q_{0} = Q_{0} + Q_{0} + Q_{0} + Q_{0} = Q_{0} + $	P = 0, 42(-0.9)(0.784) $= -14.41$ $P = -14.41$	ZONE	4 72n	-0.3	214- end
= 20.42(-0.9)(0.784) $= -14.41$ Pzone 2 = 20.42(-0.9)(0.784) = -14.41 Pzone 3 = 20.42(-0.5)(0.784) = 8.0 Pzone 4 = 20.42(-0.3)(0.784) = 4.80 Side walls: P = 0nG Cp = side wall 20.42(0.784)(0.7). P = 11.21	= 20.42(-0.9)(0.784) $= -14.41$ Pzone 2= $20.42(-0.9)(0.784)$ $= -14.41$ Pzone 3= $20.42(-0.5)(0.784)$ $= 8.0$ Pzone 4= $20.42(-0.3)(0.784)$ $= 4.80$ Side wolls: P= QnG Cp = side woll 20.42(0.784)(0.7). P= 11.21	Pzone	e1 = GCOG		
= -14.41 Pzone 2 = $20.42(-0.9)(0.784)$ $= -14.41$ Pzone 3 = $20.42(0.5)(0.784)$ $= 8.0$ Pzone 4 = $20.42(-0.3)(0.784)$ $= 4.80$ Side walls: $P = 0nG Cp = side wall$ $20.42(0.784)(0.7)$	= -14.41 Pzone 2 = 20.42(-0.9)(0.734) = -14.41 Pzone 3 = 20.42(0.5)(0.784) = 8.0 Pzone 4 = 20.42(-0.3)(0.784) = 4.80 <u>Side walls</u> : P = QnG Cp = sidewall 20.42(0.784)(0.7). P = 11.21		= 20.42 (-0.9)(0	784)
P= 0.42(-0.3)(0.784) $= 4.80$ <u>SIDE WOILS</u> : $P= 0.6 Cp = 5000000$ $= 20.42(0.784)(0.7).$ $P= 11.21$	P= 0.42(-0.3)(0.784) = 4.80 <u>SIDE WOILS</u> : P= 0.6 Cp = 500000000000000000000000000000000000	Pzone	2 = 20.42(= -14.41 : 3 = 20.42(= 8.0	-0.97(0.7 0.57(0.78	434)
$\frac{SIGE Walls}{P = Q_{n}G C_{p} = \frac{SIGE Wall}{20.42(0.784)(0.7)}$ $P = 11.21$	<u>SIGE WAILS</u> : P = QnGCp =	Pzone	= 4.80	0,3)(0,78	(10
P= QnGCp =	P= QnGCp =	side w	alls:		
	F 11, 61		$P = Q_{n}G C_{p}$ 20.42(0.	= .784)(0	F).

Seismic design Selsmic design: variable value Ss 0.155 S. 0.051 SITC D 0.165 Sds from docs 51.00 Ver fied w/ code Asce 7-05 Chill. 0.081 SDI 1.0 table 11.4.1 Fa 2.4 +0010 11.4.2 FV $S_{ms} = F_a S_s = (1.6)(0.155) = 0.248$ $S_{m_1} = F_v S_v = (2.4)(0.051) = 0.1224$ HSCE 705 114.4 Sos= (2/3) (Sms) = (2/3) (0.248)= 0.105 → matches Soi = 213 Sm, = (213)(0 1224)= 0.081 -> matches Sa = Soi asce 7-05 -12.8-2 T= Ctho Ct (all other str systems) = 0.02 X = 0.75 $T_{a} = (0.02)(107)^{0.75}$ T= CuTa 1.7(0.67)= 1.139 T= 0.67 Sa = 0.081/0 67 = 0.121 TL = ASCE705 figure 22-15 = 8 $C_s = So /_T (R/I) = 0.08 1 / (1.139) (\frac{3}{1})$

Building Weig	ght					
	Slab Area (sft)	Slab Thickness (ft)	Slab Total Weight	Super Imposed Dead Loads	Live loads Avg on Floor(psf)	Live Load Weight (Kips)
Roof	22073	0.66666667	2207.3	220.73	10	220.73
7th Floor	22073	0.66666667	2207.3	110.365	50	1103.65
6th Floor	22073	0.66666667	2207.3	110.365	50	1103.65
5th Floor	22073	0.66666667	2207.3	110.365	50	1103.65
4th Floor	22073	0.66666667	2207.3	110.365	50	1103.65
3rd Floor	22073	0.66666667	2207.3	110.365	50	1103.65
2nd Floor	22073	0.66666667	2207.3	110.365	50	1103.65
1st Floor	22073	0.66666667	2207.3	110.365	60	1324.38
Ground Floor						
Upper Scub						
Lower Scub						
		Total:	17658.4	993.285		8167.01

29693.65125
Total Building Weight (kips)

Weight at Ea	ch Floor					
	Height From Ground (ft)	Slabs (kips)	Dead Loads (kips)	Live Loads(kips)	Columns Per Floor (kips)	
Roof (top)	107	2207.3	220.73	220.73	0	2648.76
7th Floor	73	4414.6	331.095	1324.38	359.3	6429.375
6th Floor	63	6621.9	441.46	2428.03	718.6	10209.99
5th Floor	53	8829.2	551.825	3531.68	1077.9	13990.605
4th Floor	43	11036.5	662.19	4635.33	15449.9	31783.92
3rd Floor	31	13243.8	772.555	5738.98	1796.5	21551.835
2nd Floor	19	15451.1	882.92	6842.63	2155.8	25332.45
1st Floor	1	17658.4	993.285	7946.28	2874	29693.65125
Ground Floor						
Upper Scub						
Lower Scub						

Seismic Calci	ulations						
	Height from Ground (ft)	[Weight at Each Floor(kips]	×	Мана"к	Cvx	Shear at Base	Ĕ
Roof (top)	107	2648.76	13	1151440.551	0.077744351	772.04	60.022
7th Floor	73	6429.375	13	1700154.837	0.114793104	772.04	88.625
6th Floor	в	10209.99	13	2229297.51	0.150520397	772.04	116.21
5th Floor	23	13390.605	13	2440029.774	0.164748872	772.04	127.19
4th Floor	43	31783.92	13	4223927.46	0.285196227	772.04	220.18
3rd Floor	31	21551.835	13	1871778.504	0.126380998	772.04	97.571
2nd Floor	ę	25332.45	13	1164278.494	0.078611159	772.04	60.691
1st Floor	-	29693.65125	1.3	29693.65125	0.002004892	772.04	1.5479

Wind and Seismic Overview

Wind Verses Seismic Forces at Story Levels/ Overturning Moments

	N-S Wind Fy (kips)	E-W Wind Fx (kips)	Fx/Fy Seismic Design (Kips)
Roof	23.57	49.06	60.02
7 th Floor	48.88	89.10	88.62
6 Th Floor	42.37	64.07	116.21
5 Th Floor	41.57	62.70	127.19
4 th Floor	40.87	61.24	220.18
3 rd Floor	39.87	59.36	97.57
2 nd Floor	53.40	101.65	60.69
1 st Floor	23.21	71.66	1.55
Ground Floor	51.50	95.30	0
Lower Scub	0	0	0
Overturning Moment (Ft-Kip)	24409	42316	4016

ETABS MODEL

ETABS Model

An ETABS model was created for the buildings structural lateral system. The model includes the 7 shear wall concrete lateral system. Both the wind and seismic loads that were found in the previous technical reports were input at the center of rigidity, all results are compared to hand calculations.

ETABS MODEL CHECK

ETABS Model Check:

To ensure proper modeling, a dummy load of 100 kips was placed at roof level in both X and Y directions. The dummy load was applied at the center of pressure.

∑F=0 100 = 12.515 + 20.314 + 20.761 + 45.602 100=99.14 Good

ETABS MODEL CHECK

Shear Wall Relative Rigidity

Shear Wall:	1	2	3	4	5	6	7
Ground	18.63	12.62	4.73	34.05	4.73	12.62	12.62
First	17.96	13.37	6.43	29.08	6.43	13.37	13.37
Second	18.63	12.62	4.73	34.05	4.73	12.62	12.62
Third	17.61	13.50	7.14	27.61	7.14	13.50	13.50
Fourth	17.61	13.50	7.14	27.61	7.14	13.50	13.50
Fifth	17.61	13.50	7.14	27.61	7.14	13.50	13.50
Sixth	17.61	13.50	7.14	27.61	7.14	13.50	13.50
Seventh	17.61	13.50	7.14	27.61	7.14	13.50	13.50
Roof	17.91	13.39	6.53	28.85	6.53	13.39	13.39

The relative rigidity of shear wall number 4 is much larger in comparison to all the other shear walls. This is because shear wall 4 is much larger in depth than the other walls, having more area to resist forces.

Center of Ri	gidity: Hand	Calculations	vs. ETABS	
	Hand Cal	culations	ETABS Ca	lculation
	Х	Y	Х	Y
Ground Floor	168.39′	79.14′	162.20′	80.94′
First Floor	175.48′	86.22'	148.42'	75.47'
Second Floor	168.39′	79.14′	138.65′	73.65'
Third to Seventh Floor	177.51′	110.95'	115.40'	73.01′
Roof	175.80′	86.61'	131.56′	73.03′

Center of Mass:

See Appendix for COM hand calculations

Wind Load Combinations

Wind Load Combinations:

Wind Load combinations are derived from the Main Wind Force Resisting System (MWFRS) Method two in ASCE 7-05. Figure 6-9 from ASCE 7-05 explains the different wind loading cases on buildings of all heights. These four directional load cases were used to consider the potential effects of the basic wind loads. For case one and three, the wind forces are applied at the center of pressure without any eccentricity, Case two and four loads are applied at positive and negative eccentricity from the center of pressure.

ASCE 7-05 Figure 6-9

Wind Load Combinations

		ASCE 7-0	5 Wind Loa	d Case 1		
Level	Fx(K)	Fy(K)	ey(ft)	ex(ft)	Mx(ft-k)	My(ft-k)
Roof	24.59	46.47	0	0	0	0
7 Th Floor	45.88	45.89	0	0	0	0
6 Th Floor	42.34	42.33	0	0	0	0
5 th Floor	41.62	41.61	0	0	0	0
4 th Floor	40.83	40.83	0	0	0	0
3 rd Floor	39.86	39.85	0	0	0	0
2 nd Floor	53.84	53.82	0	0	0	0
1 st Floor	56.01	56	0	0	0	0
Ground	20.92	20.92	0	0	0	0

		ASCE 7-0)5 Wind Loa	d Case 2		
Level	Fx(K)	Fy(K)	ey(ft)	ex(ft)	Mx(ft-k)	My(ft-k)
Roof	18.44	40.29	47	24	53107.2	444529.6
7 Th Floor	34.42	74.15	47	24	99129.6	818115.5
6 Th Floor	31.75	67.07	47	24	91440	740000.1
5 th Floor	31.21	64.7	47	24	89884.8	713851.3
4 th Floor	30.63	62.15	47	24	88214.4	685716.5
3 rd Floor	29.9	58.91	47	24	86112	649968.8
2 nd Floor	40.83	76.75	47	24	117590.4	846801.9
1 st Floor	42.01	76.09	47	24	120988.8	839520
Ground	15.93	24.88	47	24	45878.4	274507.3

ASCE 7-05 Wind Load Case 3								
Level	Fx(K)	Fy(K)	ey(ft)	ex(ft)	Mx(ft-k)	My(ft-k)		
Roof	18.44	34.85	0	0	0	0		
7 Th Floor	34.42	64.98	0	0	0	0		
6 Th Floor	31.93	59.99	0	0	0	0		
5 th Floor	31.21	58.96	0	0	0	0		
4 th Floor	30.36	57.86	0	0	0	0		
3 rd Floor	29.9	56.45	0	0	0	0		
2 nd Floor	40.37	76.27	0	0	0	0		
1 st Floor	42.01	79.36	0	0	0	0		
Ground	15.69	29.64	0	0	0	0		

ASCE 7-05 Wind Load Case 4									
Level	Fx(K)	Fy(K)	e _y (ft)	ex(ft)	Mx(ft-k)	My(ft-k)	Mtotal(ft-k)		
Roof	13.016	4.949	24	46.95	55048	20930.59	75978.584		
7 th Floor	23.975	9.108	24	46.95	101396.4	38520.06	139916.476		
6 th Floor	21.665	8.239	24	46.95	91626.83	34844.84	126471.671		
5 th Floor	20.906	7.947	24	46.95	88416.83	33609.9	122026.723		
4 th Floor	20.075	7.634	24	46.95	84902.31	32286.14	117188.455		
3 rd Floor	19.045	7.236	24	46.95	80546.18	30602.9	111149.077		
2 nd Floor	24.796	9.427	24	46.95	104868.6	39869.2	144737.828		
1 st Floor	24.576	9.346	24	46.95	103938.2	39526.63	143464.822		
Ground	8.047	3.056	24	46.95	34032.82	12924.61	46957.4294		

Seismic Load Combinations

Seismic Loading:

Design seismic loads were calculated in technical report number 2 and were applied to the ETABS model. Since the center of mass and center of rigidity are not aligned, there is an inherent torsional moment caused by the seismic forces. A torsional amplification factor was taken into account; this factor was calculated after testing a dummy amplification factor of 1.0. With the calculated drift from the dummy factor, a new amplification factor was applied to the ETABS model. The torsional amplification factor is in accordance to ASCE 7-05 figure 12.8-1. Since the amplification factor was smaller than the dummy 1.0 factor, the actual factor remained 1.0.

FIGURE 12.8-1 TORSIONAL AMPLIFICATION FACTOR, A_x ASCE 7-05

Amplification Factors							
Level	Max Deflection X	Avg Deflection X	Ax	Ax			
Roof	3.842793	3.534884	0.820693807	1			
7Th Floor	3.29542	3.033173	0.819718414	1			
6Th Floor	2.835284	2.611468	0.81858018	1			
5th Floor	2.378003	2.192322	0.81705938	1			
4th Floor	1.928897	1.780507	0.815019899	1			
3rd Floor	1.493781	1.381211	0.81225298	1			
2nd Floor	1.08755	1.007675	0.808900316	1			
1st Floor	0.48066	0.447618	0.800752655	1			
Ground	0.18816	0.176147	0.792394796	1			

Seismic Load Combinations

N-S Seismic Forces								
Level	Story Force (K)	Story Shear (k)	5% L (ft)	Ax	Moment (ft-k)			
Roof	60.02	60.02	8	1	480.16			
7Th Floor	88.62	148.64	8	1	1189.12			
6Th Floor	116.21	264.85	8	1	2118.8			
5th Floor	127.19	392.04	8	1	3136.32			
4th Floor	220.18	612.22	8	1	4897.76			
3rd Floor	97.57	709.79	8	1	5678.32			
2nd Floor	60.69	770.48	8	1	6163.84			
1st Floor	1.55	772.03	8	1	6176.24			
Ground	0	772.03	8	1	6176.24			

Horizontal Structural Irregularities:

Torsional Irregularities were analyzed based off of ASCE 7-05 table 12-3-1. There were no significant cases of torsional irregularities. No factors were applied to the torsion.

	Irregularity Type and Description	Reference Section	Seismic Design Category Application
1a.	Torsional Irregularity is defined to exist where the maximum story drift, computed including accidental torsion, at one end of the structure transverse to an axis is more than 1.2 times the average of the story drifts at the two ends of the structure. Torsional irregularity requirements in the reference sections apply only to structures in which the diaphragms are rigid or semirigid.	12.3.3.4 12.8.4.3 12.7.3 12.12.1 Table 12.6-1 Section 16.2.2	D, E, and F C, D, E, and F B, C, D, E, and F C, D, E, and F D, E, and F B, C, D, E, and F
1b.	Extreme Torsional Irregularity is defined to exist where the maximum story drift, computed including accidental torsion, at one end of the structure transverse to an axis is more than 1.4 times the average of the story drifts at the two ends of the structure. Extreme torsional irregularity requirements in the reference sections apply only to structures in which the diaphragms are rigid or semirigid.	12.3.3.1 12.3.3.4 12.7.3 12.8.4.3 12.12.1 Table 12.6-1 Section 16.2.2	E and F D B, C, and D C and D C and D D B, C, and D
2.	Reentrant Corner Irregularity is defined to exist where both plan projections of the structure beyond a reentrant corner are greater than 15% of the plan dimension of the structure in the given direction.	12.3.3.4 Table 12.6-1	D, E, and F D, E, and F
3.	Diaphragm Discontinuity Irregularity is defined to exist where there are diaphragms with abrupt discontinuities or variations in stiffness, including those having cutout or open areas greater than 50% of the gross enclosed diaphragm area, or changes in effective diaphragm stiffness of more than 50% from one story to the next.	12.3.3.4 Table 12.6-1	D, E, and F D, E, and F
4.	Out-of-Plane Offsets Irregularity is defined to exist where there are discontinuities in a lateral force-resistance path, such as out-of-plane offsets of the vertical elements.	12.3.3.4 12.3.3.3 12.7.3 Table 12.6-1 16.2.2	D, E, and F B, C, D, E, and F B, C, D, E, and F D, E, and F B, C, D, E, and F
5.	Nonparallel Systems-Irregularity is defined to exist where the vertical lateral force-resisting elements are not parallel to or symmetric about the major orthogonal axes of the seismic force-resisting system.	12.5.3 12.7.3 Table 12.6-1 Section 16.2.2	C, D, E, and F B, C, D, E, and F D, E, and F B, C, D, E, and F

TABLE 12.3-1 HORIZONTAL STRUCTURAL IRREGULARITIES

ASCE 7-05

Controlling Load Case

Controlling Load Case:

Seismic Y plus Moment

After testing thirteen different load cases on the ETABS model, Case 2: Y Negative Eccentricity is the controlling load case producing a shear about 430 kips at the bottom of shear wall 4.

Load Cases Tested	Member	Controlling Load Case	Maximum Shear (kips)
Case 1: X-Direction	Shear Wall 1	Seismic X plus Moment	352.138
Case 1: Y-Direction Case 2: X Positive Eccentricity	Shear Wall 2	Seismic X plus Moment	112.459
Case 2: X Negative Eccentricity	Shear Wall 3	Seismic X plus Moment	140.236
Case 2: Y Negative Eccentricity	Shear Wall 4	Case 2: Y Negative Eccentricity	430.065
Case 3: X and Y (75%) Reduction	Shear Wall 5	Case 4: X+ and Y-	412.784
Case 4: X- and Y-	Shear Wall 6	Seismic Y Plus Moment	136.955
Case 4: X+ and Y-	Shear Wall 7	Seismic Y plus Moment	216.267
Seismic X plus Moment			

Controlling Load Case

Case 2: Y Negative Eccentricity controlling is logical because wind applied in the Y direction along the largest part of the building creates the highest story loads. The negative eccentricity places the forces 47 feet from the center of pressure which creates positive and negative moments about the center of rigidity. Being the most rigid shear wall, shear wall 4 takes the most loads when it is applied close to it.

тh

Lower Scub Level

dh.

Checking Shear Wall #4(Structural Wall Subjected to Lateral Wind Loads):

- 1. 1.4(D+F)
- 2. $1.2(D + F + T) + 1.6(L + H) + 0.5(L_r \text{ or } S \text{ or } R)$
- 3. $1.2D + 1.6(L_r \text{ or } S \text{ or } R) + (L \text{ or } 0.8W)$
- 4. $1.2D + 1.6W + L + 0.5(L_r \text{ or } S \text{ or } R)$
- 5. 1.2D + 1.0E + L + 0.2S
- 6. 0.9D + 1.6W + 1.6H
- 7. 0.9D + 1.0E + 1.6H

Shear Wall #4 Checks: O initial check of wall reinforcement. $e_t = \frac{A_{V HORZ}}{NS^2}$ $e_{t} = \frac{2(0.44)}{17 \times 16} = 0.00458$ good max center to center spacing -lw= 30=6"~ le = <u>Avvert</u> = <u>2(0.44</u>) = 0.00488 good hs. 10×13 = 0.00488 good Check moment strength. Nu = 760(0.9) = 684 Kips B. = 0.85 f'c = 5000psi fy = 60Rsi $W = e_{e} \frac{f_{u}}{p_{c}} = 0.00488 \left[\frac{60}{5} \right] = 0.058$ $\alpha = \frac{Nu}{R l_{o} f'c} = \frac{(084)}{12(30)(12)(5)} = 0.032$ $C = \left(\frac{\alpha + \omega}{0.85B_1 + 2\omega}\right) \ell\omega$ $= \left(\frac{0.032 + 0.058}{0.85(0.25) + 2(0.058)}\right) 360 = 38.6 \text{ in}$ $A_{ST} = 2A_0\left(\frac{\ell_w}{S_1}\right) = 2(0.44)\left(\frac{3\omega0}{10}\right) = 17.6 in^2$

Calculation for Nu

	Slab Thickness (ft)	Trib Area (sft)	Dead Floors (pcf)	Live Floors (psf)	Total Dead(kips)	Total Live	
Roof	0.667	165	150	30	16.50825	4.95	
7th Floor	0.667	165	150	50	16.50825	8.25	
6th Floor	0.667	165	150	50	16.50825	8.25	
5th Floor	0.667	165	150	50	16.50825	8.25	
4th Floor	0.667	165	150	50	16.50825	8.25	
3rd Floor	0.667	165	150	50	16.50825	8.25	
2nd Floor	0.667	165	150	50	16.50825	8.25	
1st Floor	0.667	165	150	100	16.50825	16.5	
Ground	0.667	165	150	100	16.50825	16.5	
Scub	0.667	165	150	150	16.50825	24.75	
				Total Weight :	165.0825	112.2	

Shear wall	Weight			
Height	Length	Width	pcf	Total
107	30	1	150	481.5

Calculation for Shear Wall #4 Base Moment Mu

	Trib Height	Trib Width	Trib Area	Wind load (psf)	Py (kip)	Height from Ground (ft)	
Roof	6.3	114	718.2	12.37	8.884134	115.02	
7th Floor	16.97	114	1934.58	12.06	23.3310348	102.35	
6th Floor	10.67	114	1216.38	11.58	14.0856804	91.687	
5th Floor	10.67	114	1216.38	11.17	13.5869646	81.01	
4th Floor	10.67	114	1216.38	10.73	13.0517574	70.34	
3rd Floor	10.67	114	1216.38	10.17	12.3705846	59.67	
2nd Floor	14.8	114	1687.2	9.53	16.079016	49	
1st Floor	16	114	1824	8.76	15.97824	30	
Ground	6.5	114	741	7.05	5.22405	17	
Scub	0	114	0	0	0	0	
						Moment (ft-k):	8814.17952

Check shear strength:

$$V_{u} = (1.6)(19(0.15) = 313.8416.$$

 $\frac{h_{w}}{-l_{w}} = \frac{107}{30} = 3.5$ Stender wall
 $\lambda = 10$ NW concrete.
 $d = 0.8 l_{w} = 0.8(30) = 24' = 288''$
 $V_{c} = 3.3 \times \sqrt{F'c}$ hd + $\frac{Nud}{4l_{w}}$
 $= 3.3(1.0)(\sqrt{5000})(12)(289) + \frac{(0.84(12))}{4(300)}$
 $= 80(0 \text{ Mips})$

$$M_{u} \operatorname{Critecal} = M_{u} \operatorname{pose} - V_{u} \operatorname{pose} \left(\frac{\ell_{w}}{2}\right)$$

$$= 881H - 313.84(30)$$

$$= 4100.4 \text{ M} - 9t$$

$$M_{u} = 4100.4 = 13.08 \operatorname{feet}$$

$$V_{u} = \frac{4100.4}{313.24} = 13.08 \operatorname{feet}$$

$$V_{c} = \left[0.6 \times \sqrt{16c} + \frac{\left(\ell_{w}\left(1.25\times(\sqrt{16c}) + 0.2\frac{N_{w}}{\ell_{w}k}\right)\right)}{\frac{M_{u}}{V_{u}} - \frac{\ell_{w}}{2}}\right] \operatorname{hd}$$

$$= \left[(12)(288)\right] \times \left[0.6\sqrt{15000} + \frac{(300(1.25\times\sqrt{5000}) + 0.2\left(\frac{\sqrt{1014}}{300(1.25\times\sqrt{5000})}\right)}{157 - \frac{3000}{2}}\right]$$

$$V_{c} = 403 \operatorname{Kips} 7 430 \operatorname{Kips} \operatorname{Max} \operatorname{case} \times \frac{9000}{4}$$

Shear wall #4 passed both the moment and critical shear tests. It is designed with adequate strength to withstand the maximum load case.

Story Drift Checks

Story Displacement:

The maximum allowable story displacement according to ASCE7-05 is based off of the equation H/400.(128.02*12/400=3.841"). The maximum allowable story drift ratio is 0.2.

Loading Case	Max Roof Story Displacement (Inches)	Max Displacement ASCE 7- 05 (Inches)	Pass/Fail
Case 1: X-Direction	1.138	3.841	Pass
Case 1: Y-Direction	0.557	3.841	Pass
Case 2: X Positive Eccentricity	1.138	3.841	Pass
Case 2: X Negative Eccentricity	1.059	3.841	Pass
Case 2: Y Positive Eccentricity	1.597	3.841	Pass
Case 2: Y Negative Eccentricity	0.579	3.841	Pass
Case 3: X and Y (75%) Reduction	1.116	3.841	Pass
Case 4: X+ and Y+	0.689	3.841	Pass
Case 4: X- and Y-	0.691	3.841	Pass
Case 4: X+ and Y-	0.789	3.841	Pass
Case 4: X- and Y+	0.762	3.841	Pass
Seismic X plus Moment	3.80	3.841	Pass
Seismic Y plus Moment	1.62	3.841	Pass

Loading Case	Drift Ratio (Roof)		Maximum Drift	Pass/Fail	
	X	Y	Ratio (ASCE7-03)		
Case 1: X-Direction	0.001	0.000	0.02	Pass	
Case 1: Y-Direction	0.000	0.005	0.02	Pass	
Case 2: X Positive Eccentricity	0.001	0.0002	0.02	Pass	
Case 2: X Negative Eccentricity	0.0009	0.001	0.02	Pass	
Case 2: Y Positive Eccentricity	0.0006	0.002	0.02	Pass	
Case 2: Y Negative Eccentricity	0.0002	0.001	0.02	Pass	
Case 3: X and Y (75%) Reduction	0.001	0.006	0.02	Pass	
Case 4: X+ and Y+	0.006	0.0005	0.02	Pass	
Case 4: X- and Y-	0.0085	0.007	0.02	Pass	
Case 4: X+ and Y-	0.007	0.002	0.02	Pass	
Case 4: X- and Y+	0.007	0.002	0.02	Pass	

Maximum Overturning Moment and Resisting Moment:

Maximum moments for each case were evaluated at the base of the structure. To get the resisting moment, the weight of the building at the center of mass was multiplied by its shortest moment arm to the exterior of the foundation. Then it was divided by a safety factor of 1.5. The new calculated factor of safety is about 7.9.

	Maximum Overtu	Irning Moment (Ft-K)	
Load Case	Х	Y	Absulute Value
Case 1: X-Direction	0	-25433.8	25433.8
Case 1: Y-Direction	27991.6	0	27991.6
Case 2: X Positive Eccentricity	0	-19103.7	19103.7
Case 2: X Negative Eccentricity	0	-19103.6	19103.6
Case 2: Y Positive Eccentricity	39056.9	0	39056.9
Case 2: Y Negative Eccentricity	39056.9	0	39056.9
Case 3: X and Y (75%) Reduction	36032.3	-19070	36032.3
Case 4: X+ and Y+	4797.5	-12620.6	12620.6
Case 4: X- and Y-	4797.5	-12620.6	12620.6
Case 4: X+ and Y-	4797.5	-12620.6	12620.6
Case 4: X- and Y+	4797.5	-12620.6	12620.6
Seismic X plus Moment	0	-62805.4	62805.4
Seismic Y plus Moment	62805.4	0	62805.4

Weight of Building (kips)	Moment arm (ft)	F.O.S.	Resisting Moment
39056.9	18.94	1.5	493158.4573

Max Overturn Moment	Resisting Moment	F.O.S	
62805.4	493158.4573	7.852166491	

Foundations Impact:

The foundation was checked for overturning moment and found that the resisting moment was about 493158 Ft-Kips. The resisting moment is much larger than the overturning moment therefore the foundation is found to be sufficient to resist the maximum load case. More in depth analysis of the foundations would need to be checked for settlement and uplift.

Conclusion

Conclusion:

This report included the analysis of Prince Frederick Hall's lateral force resisting system under wind and seismic conditions. Using ASCE7-05, wind and seismic loads were calculated based on location and specific site information. Those loads from tech 2 were used on the ETABS model specifically created for this technical report. These loads were calculated from the code used to design the building. The building passed checks for deflections, shear and overturning moment. This was done by looking specifically at the worst case loading scenario and the controlling shear wall. Shear wall number 4 spot checks show that all the shear walls were designed to withstand the maximum forces on the building,

APPENDIX TECH REPORT 4

Prince Frederick Hall

The University of Maryland

College Park, MD

Christopher Cioffi AE Senior Thesis- Structural Advisor: Heather Sustersic

Realitive Rig	idity								
Shear Wall 1									
(Level Below)	Height(Ft)	Height (In)	Thickness(In)	Length(Ft)	E	R	Total Rigidity/Floor	Relative Rigidity	
Ground	19	228	12	20	3600000	1354720	7270888.56	18.63211549	
First	13	156	12	20	3600000	1735253	9662768.298	17.95813897	
Second	19	228	12	20	3600000	1354720	7270888.56	18.63211549	
Third	10.67	128.04	12	20	3600000	1844408	10472385.05	17.61210866	
Fourth	10.67	128.04	12	20	3600000	1844408	10472385.05	17.61210866	
Fifth	10.67	128.04	12	20	3600000	1844408	10472385.05	17.61210866	
Sixth	10.67	128.04	12	20	3600000	1844408	10472385.05	17.61210866	
Seventh	10.67	128.04	12	20	3600000	1844408	10472385.05	17.61210866	
Roof	12.67	152.04	12	20	3600000	1752475	9785446.71	17.90899276	

Shear Wall 2									
Ground	19	228	12	16	3600000	917300.2	7270888.56	12.61606677	
First	13	156	12	16	3600000	1292000	9662768.298	13.37091308	
Second	19	228	12	16	3600000	917300.2	7270888.56	12.61606677	
Third	10.67	128.04	12	16	3600000	1413664	10472385.05	13.49896808	
Fourth	10.67	128.04	12	16	3600000	1413664	10472385.05	13.49896808	
Fifth	10.67	128.04	12	16	3600000	1413664	10472385.05	13.49896808	
Sixth	10.67	128.04	12	16	3600000	1413664	10472385.05	13.49896808	
Seventh	10.67	128.04	12	16	3600000	1413664	10472385.05	13.49896808	
Roof	12.67	152.04	12	16	3600000	1310732	9785446.71	13.39470291	

Shear Wall 3									
Ground	19	228	12	10	3600000	344201.2	7270888.56	4.733962894	
First	13	156	12	10	3600000	621010.9	9662768.298	6.426842169	
Second	19	228	12	10	3600000	344201.2	7270888.56	4.733962894	
Third	10.67	128.04	12	10	3600000	747699.6	10472385.05	7.139726153	
Fourth	10.67	128.04	12	10	3600000	747699.6	10472385.05	7.139726153	
Fifth	10.67	128.04	12	10	3600000	747699.6	10472385.05	7.139726153	
Sixth	10.67	128.04	12	10	3600000	747699.6	10472385.05	7.139726153	
Seventh	10.67	128.04	12	10	3600000	747699.6	10472385.05	7.139726153	
Roof	12.67	152.04	12	10	3600000	638988.8	9785446.71	6.529991573	
Shear Wall 4									
Ground	19	228	12	30	3600000	2475865	7270888.56	34.05175841	
First	13	156	12	30	3600000	2809492	9662768.298	29.07543745	
Second	19	228	12	30	3600000	2475865	7270888.56	34.05175841	
Third	10.67	128.04	12	30	3600000	2891586	10472385.05	27.61153479	
Fourth	10.67	128.04	12	30	3600000	2891586	10472385.05	27.61153479	
Fifth	10.67	128.04	12	30	3600000	2891586	10472385.05	27.61153479	
Sixth	10.67	128.04	12	30	3600000	2891586	10472385.05	27.61153479	
Seventh	10.67	128.04	12	30	3600000	2891586	10472385.05	27.61153479	
Roof	12.67	152.04	12	30	3600000	2822800	9785446.71	28.84691536	
Shear Wall 5									
Ground	19	228	12	10	3600000	344201.2	7270888.56	4.733962894	
First	13	156	12	10	3600000	621010.9	9662768.298	6.426842169	
Second	19	228	12	10	3600000	344201.2	7270888.56	4.733962894	
Third	10.67	128.04	12	10	3600000	747699.6	10472385.05	7.139726153	
Fourth	10.67	128.04	12	10	3600000	747699.6	10472385.05	7.139726153	
Fifth	10.67	128.04	12	10	3600000	747699.6	10472385.05	7.139726153	
Sixth	10.67	128.04	12	10	3600000	747699.6	10472385.05	7.139726153	
Seventh	10.67	128.04	12	10	3600000	747699.6	10472385.05	7.139726153	
Roof	12.67	152.04	12	10	3600000	638988.8	9785446.71	6.529991573	

Shear Wall 6										
Ground	19	228	12	16	3600000	917300.2	7270888.56	12.61606677		
First	13	156	12	16	3600000	1292000	9662768.298	13.37091308		
Second	19	228	12	16	3600000	917300.2	7270888.56	12.61606677		
Third	10.67	128.04	12	16	3600000	1413664	10472385.05	13.49896808		
Fourth	10.67	128.04	12	16	3600000	1413664	10472385.05	13.49896808		
Fifth	10.67	128.04	12	16	3600000	1413664	10472385.05	13.49896808		
Sixth	10.67	128.04	12	16	3600000	1413664	10472385.05	13.49896808		
Seventh	10.67	128.04	12	16	3600000	1413664	10472385.05	13.49896808		
Roof	12.67	152.04	12	16	3600000	1310732	9785446.71	13.39470291		
									-	
Shear Wall 7										
Ground	19	228	12	16	3600000	917300.2	7270888.56	12.61606677		
First	13	156	12	16	3600000	1292000	9662768.298	13.37091308		
Second	19	228	12	16	3600000	917300.2	7270888.56	12.61606677		
Third	10.67	128.04	12	16	3600000	1413664	10472385.05	13.49896808		
Fourth	10.67	128.04	12	16	3600000	1413664	10472385.05	13.49896808		
Fifth	10.67	128.04	12	16	3600000	1413664	10472385.05	13.49896808		
Sixth	10.67	128.04	12	16	3600000	1413664	10472385.05	13.49896808		
Seventh	10.67	128.04	12	16	3600000	1413664	10472385.05	13.49896808		
Roof	12.67	152.04	12	16	3600000	1310732	9785446.71	13.39470291		

Center of	Rigidity							
Ground Floor								
	Distance From	n Zero Reference	Relative	Rigidity				
Element	X (Ft)	Y (Ft)	Rx	Ry	RxY	RyX		
Shear Wall 1	52	12	18.63211549	0	223.5853859	0		
Shear Wall 2	42	127	12.61606677	0	1602.24048	0		
Shear Wall 3	108	160	4.733962894	0	757.434063	0		
Shear Wall 4	112	150	0	34.05175841	0	3813.796942		
Shear Wall 5	108	135	4.733962894	0	639.0849906	0		
Shear Wall 6	177	144	0	12.61606677	0	2233.043818		
Shear Wall 7	312	117	0	12.61606677	0	3936.212832		
							X bar r	Y bar r
Totals			40.71610805	59.28389195	3222.344919	9983.053593	168.394	79.14177

First Floor								
	Distance Fron	n Zero Reference	Relative	Rigidity				
Element	X (Ft)	Y (Ft)	Rx	Ry	RxY	RyX		
Shear Wall 1	52	12	17.95813897	0	215.4976676	0		
Shear Wall 2	42	127	13.37091308	0	1698.105961	0		
Shear Wall 3	108	160	6.426842169	0	1028.294747	0		
Shear Wall 4	112	150	0	29.07543745	0	3256.448994		
Shear Wall 5	108	135	6.426842169	0	867.6236928	0		
Shear Wall 6	177	144	0	13.37091308	0	2366.651615		
Shear Wall 7	312	117	0	13.37091308	0	4171.724882		
							X bar r	Y bar r
Totals			44.18273639	55.81726361	3809.522069	9794.825491	175.4802	86.22196

Second Floor								
	Distance From	n Zero Reference	Relative	Rigidity				
Element	X (Ft)	Y (Ft)	Rx	Ry	RxY	RyX		
Shear Wall 1	52	12	18.63211549	0	223.5853859	0		
Shear Wall 2	42	127	12.61606677	0	1602.24048	0		
Shear Wall 3	108	160	4.733962894	0	757.434063	0		
Shear Wall 4	112	150	0	34.05175841	0	3813.796942		
Shear Wall 5	108	135	4.733962894	0	639.0849906	0		
Shear Wall 6	177	144	0	12.61606677	0	2233.043818		
Shear Wall 7	312	117	0	12.61606677	0	3936.212832		
							X bar r	Y bar r
Totals			40.71610805	59.28389195	3222.344919	9983.053593	168.394	79.14177

Third To Seventh Floor (Heights are consistant)

	Distance From	n Zero Reference	Relative	Rigidity				
Element	X (Ft)	Y (Ft)	Rx	Ry	RxY	RyX		
Shear Wall 1	52	12	17.61210866	0	211.3453039	0		
Shear Wall 2	42	127	13.49896808	0	1714.368946	0		
Shear Wall 3	108	160	27.61153479	0	4417.845566	0		
Shear Wall 4	112	150	0	27.61153479	0	3092.491896		
Shear Wall 5	108	135	7.139726153	0	963.8630306	0		
Shear Wall 6	177	144	0	13.49896808	0	2389.317351		
Shear Wall 7	312	117	0	13.49896808	0	4211.678042		
							X bar r	Y bar r
Totals			65.86233768	54.60947095	7307.422847	9693.487289	177.5056	110.9499

Roof								
	Distance From	n Zero Reference	Relative	Rigidity				
Element	X (Ft)	Y (Ft)	Rx	Ry	RxY	RyX		
Shear Wall 1	52	12	17.90899276	0	214.9079131	0		
Shear Wall 2	42	127	13.39470291	0	1701.12727	0		
Shear Wall 3	108	160	6.529991573	0	1044.798652	0		
Shear Wall 4	112	150	0	28.84691536	0	3230.85452		
Shear Wall 5	108	135	6.529991573	0	881.5488624	0		
Shear Wall 6	177	144	0	13.39470291	0	2370.862416		
Shear Wall 7	312	117	0	13.39470291	0	4179.147309		
							X bar r	Y bar r
Totals			44.36367882	55.63632118	3842.382697	9780.864244	175.8	86.611

F

Center of Mass Fo	rr Typical Floors 3-7								
Façades									
						Distance From 2	Zero Reference		
Element (CMU)	Wall Length (Ft)	Wall Height(Ft)	Thickness (Ft)	Unit Weight(Lbs/cFt)	Weight (k)	X (ft)	Y (ft)	Wx	Wy
Façade 1	160	10.67	1	98	146.8192	0	80	0	11745.54
Façade 2	312	10.67	1	86	286.29744	156	160	44662.4	45807.59
Façade 4	249	10.67	1	98	228.48738	187.5	112	42841.38	25590.59
Façade 5	112	10.67	1	98	102.77344	63	56	6474.727	5755.313
Element(Glass)	Wall Length (Ft)	Wall Height(Ft)		Unit Weight(Lbs/sft)	Weight (k)	X (ft)	Y (ft)	Wx	Wy
Façade 3	48	10.67		6	4.60944	312	136	1438.145	626.8838
Façade 6	63	10.67		6	6.04989	31.5	0	190.5715	0
				Total:	775.03679		Total:	95607.23	89525.91

Slab									
						Distance From	Zero Reference		
Element	Floor Area Length (Ft)	Floor Area Width(Ft)	Thickness (Ft)	Unit Weight(Lbs/cFt)	Weight (k)	X (ft)	Y (ft)	Wx	Wy
A	100	65	0.667	150	650.325	32.5	50	21135.56	32516.25
8	35	65	0.667	150	227.61375	17.5	126.5	3983.241	28793.14
U	87	65	0.667	150	565.78275	62.71	132.5	35480.24	74966.21
Q	50	65	0.667	150	325.1625	142.3	132.5	46270.62	43084.03
Е	70	65	0.667	150	455.2275	201.1	132.5	91546.25	60317.64
ł	80	92	0.667	150	520.26	273	132.5	142031	68934.45
				Total:	2744.3715		Total:	340446.9	308611.7

Shear Walls									
						Distance From	Zero Reference		
Element	Length (Ft)	Width(Ft)	Height	Unit Weight(Lbs/cFt)	Weight (k)	X (ft)	Y (ft)	Wx	Ŵ
Shear Wall 1	20	1	10.67	150	32.01	52	12	1664.52	384.12
Shear Wall 2	16	1	10.67	150	25.608	42	127	1075.536	3252.216
Shear Wall 3	10	1	10.67	150	16.005	108	160	1728.54	2560.8
Shear Wall 4	30	1	10.67	150	48.015	112	150	5377.68	7202.25
Shear Wall 5	10	1	10.67	150	16.005	108	135	1728.54	2160.675
Shear Wall 6	16	1	10.67	150	25.608	177	144	4532.616	3687.552
Shear Wall 7	16	1	10.67	150	25.608	312	117	7989.696	2996.136
				Total	122 250		Total	24/007/12	27 2ACCC

Center of	Mass			
Σw	ΣWx	Wγ	X bar	Y bar
3708 267	460151.2	420381.4	124.0879	113,3633

Story	Shear Wall	P (kip)	V2 (kip)	V3 (kip)	T (kip-ft)	M2 (kip-ft)	M3 (kip-ft)
Main Roof	Shear Wall 1	0	1.379	-0.036	-2.9048	-0.4566	17.4679
Main Roof	Shear Wall 2	0	-0.34	-0.022	-1.691	-0.2844	-4.3081
Main Roof	Shear Wall 5	13.087	7.561	-3.651	-19.8652	-5.7658	22.2499
Main Roof	Shear Wall 3	-13.997	-8.492	-3.606	-19.6206	-5.7027	-30.0889
Main Roof	Shear Wall 4	0.91	51.407	0.098	-11.8264	0.2599	130.7305
Main Roof	Shear Wall 6	0	-3.163	0.007	-2.7701	0.0834	-40.074
Main Roof	Shear Wall 7	0	-0.639	0.003	-2.8374	0.0438	-8.0978
7th Floor	Shear Wall 1	0	-0.475	-0.001	-2.9388	-0.4724	12.4016
7th Floor	Shear Wall 2	0	-0.052	-0.001	-1.7088	-0.2933	-4.8673
7th Floor	Shear Wall 5	37.564	13.654	-2.956	-17.3211	-4.512	31.3991
7th Floor	Shear Wall 3	-37.608	-12.969	-2.883	-16.9354	-4.4034	-38.1538
7th Floor	Shear Wall 4	0.044	120.332	0.155	-15.5749	0.3843	568.3989
7th Floor	Shear Wall 6	0	0.328	0.002	-2.8021	0.101	-36.5724
7th Floor	Shear Wall 7	0	-0.38	0.001	-2.8705	0.0574	-12.1504
6th Floor	Shear Wall 1	0	-3.923	0.044	-2.9758	-0.0049	-29.4534
6th Floor	Shear Wall 2	0	0.595	0.028	-1.7272	0.0002	1.4864
6th Floor	Shear Wall 5	76.342	21.338	-2.773	-16.1707	-4.1477	43.2521
6th Floor	Shear Wall 3	-72.522	-17.908	-2.688	-15.7139	-4.0098	-35.7944
6th Floor	Shear Wall 4	-3.82	180.358	0.117	-21.1952	0.1988	1236.301
6th Floor	Shear Wall 6	0	6.813	-0.01	-2.8368	-0.0039	36.1199
6th Floor	Shear Wall 7	0	-0.271	-0.005	-2.9063	-0.0012	-15.0445
Sth Floor	Shear Wall 1	0	-6.915	0.065	-2.9764	0.6888	-103.2398
Sth Floor	Shear Wall 2	0	1.12	0.036	-1.7263	0.3801	13.4403
Sth Floor	Shear Wall 5	129.315	29.138	-2.594	-15.3391	-3.6823	59.1081
Sth Floor	Shear Wall 3	-118.659	-23.28	-2.486	-14.7472	-3.4998	-27.4754
Sth Floor	Shear Wall 4	-10.656	238.994	0.089	-28.5393	-0.124	2120.6684
Sth Floor	Shear Wall 6	0	12.475	-0.016	-2.8371	-0.1792	169.2237
Sth Floor	Shear Wall 7	0	-0.28	-0.01	-2.9067	-0.1089	-18.0294
4th Floor	Shear Wall 1	0	-9.119	0.107	-2.9269	1.8289	-200.5446
4th Floor	Shear Wall 2	0	1.427	0.069	-1.6959	1.1215	28.6714
4th Floor	Shear Wall 5	195.995	36.602	-2.393	-14.4543	-3.0025	77.0254
4th Floor	Shear Wall 3	-176.039	-28.866	-2.227	-13.5356	-2.7266	-14.5029
4th Floor	Shear Wall 4	-19.956	296.516	0.08	-38.6967	-0.5131	3217.7673
4th Floor	Shear Wall 6	0	16.605	-0.023	-2.7894	-0.4273	346.3974
4th Floor	Shear Wall 7	0	-0.317	-0.013	-2.8581	-0.2468	-21.4138
3rd Floor	Shear Wall 1	0	-10.423	0.061	-2.8217	2.4759	-311.7548
3rd Floor	Shear Wall 2	0	1.527	0.024	-1.6313	1.3753	44.9603
3rd Floor	Shear Wall 5	275.044	43.903	-2.92	-16.8503	-3.6977	100.6625
3rd Floor	Shear Wall 3	-243.733	-34.761	-2.605	-15.1241	-3.1882	-5.1595
3rd Floor	Shear Wall 4	-31.311	353.934	0.277	-51.97	-0.5854	4551.8723
3rd Floor	Shear Wall 6	0	19.397	-0.018	-2.6889	-0.6216	553.3656
3rd Floor	Shear Wall 7	0	-0.622	-0.012	-2.7553	-0.3777	-28.0476
2nd Floor	Shear Wall 1	0	-14.784	0.133	-2.5199	4.9953	-592.6566
2nd Floor	Shear Wall 2	0	2.08	0.094	-1.4573	3.1698	84.4814
2nd Floor	Shear Wall 5	446.694	53.496	-1.906	-11.7302	-1.518	143.1209
2nd Floor	Shear Wall 3	-386.22	-40.16	-1.324	-8.4879	-0.5484	34.6352
2nd Floor	Shear Wall 4	-60.474	419.154	0.68	-69.5152	+0.732	7344.9088
2nd Floor	Shear Wall 6	0	28.581	-0.031	-2.4009	-1.2037	1096.4124
2nd Floor	Shear Wall 7	0	-0.713	-0.018	-2.4604	-0.7134	-41.5933
1st Floor	Shear Wall 1	0	-26.943	-0.063	-2.0435	4.1804	-942.9198
1st Floor	Shear Wall 2	0	4.685	-0.087	-1.1866	2.0397	145.3844
1st Floor	Shear Wall 5	583.147	61.737	1.355	5.2336	4.2443	173.8307
1st Floor	Shear Wall 3	-489.837	-38.537	2.039	8.9319	5.409	114.1697
1st Floor	Shear Wall 4	-93.31	463.597	0.977	-65.8729	•1.4287	9502.925
1st Floor	Shear Wall 6	0	53.458	-0.014	-1.9489	-1.39	1/91.3/05
1st Floor	Shear Wall 7	0	-0.19	-0.02	-1.9962	-0.9772	-44.0606
Ground Floor	Shear Wall 1	0	-45.8	1.147	-1.4174	25.9752	-1813.1271
Ground Floor	Shear Wall 2	0	9.44	0./12	-0.7403	15.5751	324.745
Ground Floor	Shear Wall 5	771.893	56.104	10.069	44.3261	28.1393	153.0156
Ground Floor	Shear Wall 3	-617.688	-22.052	10.645	46.7825	29.2525	477.3994
Ground Floor	Shear Wall 4	-154.205	430.065	-1.944	-127.738	-12.8878	12875.2904
Ground Floor	Shear Wall 6	0	87.829	-0.236	-1.334	-5.8816	3460.1141
Ground Floor	Shear Wall 7	0	4.523	-0.128	-1.3754	-3.408	41.8803